
Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

Practical Linux Programming Device Drivers
Embedded Systems And The Internet Programming
Series
Over the last few years, Linux has grown both as an operating system and a tool
for personal and business use. Simultaneously becoming more user friendly and
more powerful as a back-end system, Linux has achieved new plateaus: the
newer filesystems have solidified, new commands and tools have appeared and
become standard, and the desktop--including new desktop environments--have
proved to be viable, stable, and readily accessible to even those who don't
consider themselves computer gurus. Whether you're using Linux for personal
software projects, for a small office or home office (often termed the SOHO
environment), to provide services to a small group of colleagues, or to administer
a site responsible for millions of email and web connections each day, you need
quick access to information on a wide range of tools. This book covers all
aspects of administering and making effective use of Linux systems. Among its
topics are booting, package management, and revision control. But foremost in
Linux in a Nutshell are the utilities and commands that make Linux one of the

Page 1/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

most powerful and flexible systems available. Now in its fifth edition, Linux in a
Nutshell brings users up-to-date with the current state of Linux. Considered by
many to be the most complete and authoritative command reference for Linux
available, the book covers all substantial user, programming, administration, and
networking commands for the most common Linux distributions. Comprehensive
but concise, the fifth edition has been updated to cover new features of major
Linux distributions. Configuration information for the rapidly growing commercial
network services and community update services is one of the subjects covered
for the first time. But that's just the beginning. The book covers editors, shells,
and LILO and GRUB boot options. There's also coverage of Apache, Samba,
Postfix, sendmail, CVS, Subversion, Emacs, vi, sed, gawk, and much more.
Everything that system administrators, developers, and power users need to
know about Linux is referenced here, and they will turn to this book again and
again.
This book follows on from Linux Kernel Programming, helping you explore the
Linux character device driver framework and enables you to write 'misc' class
drivers. You'll learn how to efficiently interface with user apps, perform I/O on
hardware memory, handle hardware interrupts, and leverage kernel delays,
timers, kthreads, and workqueues.

Page 2/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

Up-to-the-Minute, Complete Guidance for Developing Embedded Solutions with
Linux Linux has emerged as today’s #1 operating system for embedded
products. Christopher Hallinan’s Embedded Linux Primer has proven itself as the
definitive real-world guide to building efficient, high-value, embedded systems
with Linux. Now, Hallinan has thoroughly updated this highly praised book for the
newest Linux kernels, capabilities, tools, and hardware support, including
advanced multicore processors. Drawing on more than a decade of embedded
Linux experience, Hallinan helps you rapidly climb the learning curve, whether
you’re moving from legacy environments or you’re new to embedded
programming. Hallinan addresses today’s most important development
challenges and demonstrates how to solve the problems you’re most likely to
encounter. You’ll learn how to build a modern, efficient embedded Linux
development environment, and then utilize it as productively as possible. Hallinan
offers up-to-date guidance on everything from kernel configuration and
initialization to bootloaders, device drivers to file systems, and BusyBox utilities to
real-time configuration and system analysis. This edition adds entirely new
chapters on UDEV, USB, and open source build systems. Tour the typical
embedded system and development environment and understand its concepts
and components. Understand the Linux kernel and userspace initialization

Page 3/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

processes. Preview bootloaders, with specific emphasis on U-Boot. Configure the
Memory Technology Devices (MTD) subsystem to interface with flash (and other)
memory devices. Make the most of BusyBox and latest open source
development tools. Learn from expanded and updated coverage of kernel
debugging. Build and analyze real-time systems with Linux. Learn to configure
device files and driver loading with UDEV. Walk through detailed coverage of the
USB subsystem. Introduces the latest open source embedded Linux build
systems. Reference appendices include U-Boot and BusyBox commands.
Harness the power of Linux to create versatile and robust embedded solutions
Key Features Learn how to develop and configure robust embedded Linux
devices Explore the new features of Linux 5.4 and the Yocto Project 3.1 (Dunfell)
Discover different ways to debug and profile your code in both user space and
the Linux kernel Book Description Embedded Linux runs many of the devices we
use every day. From smart TVs and Wi-Fi routers to test equipment and
industrial controllers, all of them have Linux at their heart. The Linux OS is one of
the foundational technologies comprising the core of the Internet of Things (IoT).
This book starts by breaking down the fundamental elements that underpin all
embedded Linux projects: the toolchain, the bootloader, the kernel, and the root
filesystem. After that, you will learn how to create each of these elements from

Page 4/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

scratch and automate the process using Buildroot and the Yocto Project. As you
progress, the book explains how to implement an effective storage strategy for
flash memory chips and install updates to a device remotely once it's deployed.
You'll also learn about the key aspects of writing code for embedded Linux, such
as how to access hardware from apps, the implications of writing multi-threaded
code, and techniques to manage memory in an efficient way. The final chapters
demonstrate how to debug your code, whether it resides in apps or in the Linux
kernel itself. You'll also cover the different tracers and profilers that are available
for Linux so that you can quickly pinpoint any performance bottlenecks in your
system. By the end of this Linux book, you'll be able to create efficient and
secure embedded devices using Linux. What you will learn Use Buildroot and the
Yocto Project to create embedded Linux systems Troubleshoot BitBake build
failures and streamline your Yocto development workflow Update IoT devices
securely in the field using Mender or balena Prototype peripheral additions by
reading schematics, modifying device trees, soldering breakout boards, and
probing pins with a logic analyzer Interact with hardware without having to write
kernel device drivers Divide your system up into services supervised by BusyBox
runit Debug devices remotely using GDB and measure the performance of
systems using tools such as perf, ftrace, eBPF, and Callgrind Who this book is

Page 5/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

for If you're a systems software engineer or system administrator who wants to
learn Linux implementation on embedded devices, then this book is for you.
Embedded systems engineers accustomed to programming for low-power
microcontrollers can use this book to help make the leap to high-speed systems
on chips that can run Linux. Anyone responsible for developing new hardware
that needs to run Linux will also find this book useful. Basic working knowledge of
the POSIX standard, C programming, and shell scripting is assumed.
Presents an overview of kernel configuration and building for version 2.6 of the
Linux kernel.
UNIX, UNIX LINUX & UNIX TCL/TK. Write software that makes the most
effective use of the Linux system, including the kernel and core system libraries.
The majority of both Unix and Linux code is still written at the system level, and
this book helps you focus on everything above the kernel, where applications
such as Apache, bash, cp, vim, Emacs, gcc, gdb, glibc, ls, mv, and X exist.
Written primarily for engineers looking to program at the low level, this updated
edition of Linux System Programming gives you an understanding of core
internals that makes for better code, no matter where it appears in the stack. --
Provided by publisher.
This book is broken into four primary sections addressing key topics that Linux

Page 6/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

programmers need to master: Linux nuts and bolts, the Linux kernel, the Linux
desktop, and Linux for the Web Effective examples help get readers up to speed
with building software on a Linux-based system while using the tools and utilities
that contribute to streamlining the software development process Discusses
using emulation and virtualization technologies for kernel development and
application testing Includes useful insights aimed at helping readers understand
how their applications code fits in with the rest of the software stack Examines
cross-compilation, dynamic device insertion and removal, key Linux projects
(such as Project Utopia), and the internationalization capabilities present in the
GNOME desktop
Pajari provides application programmers with definitive information on writing
device drivers for the UNIX operating system. The comprehensive coverage
includes the four major categories of UNIX device drivers: character, block,
terminal, and stream drivers. (Operating Systems)
Learn to develop customized device drivers for your embedded Linux systemAbout This
Book* Learn to develop customized Linux device drivers* Learn the core concepts of
device drivers such as memory management, kernel caching, advanced IRQ
management, and so on.* Practical experience on the embedded side of LinuxWho
This Book Is ForThis book will help anyone who wants to get started with developing

Page 7/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

their own Linux device drivers for embedded systems. Embedded Linux users will
benefit highly from this book.This book covers all about device driver development,
from char drivers to network device drivers to memory management.What You Will
Learn* Use kernel facilities to develop powerful drivers* Develop drivers for widely used
I2C and SPI devices and use the regmap API* Write and support devicetree from within
your drivers* Program advanced drivers for network and frame buffer devices* Delve
into the Linux irqdomain API and write interrupt controller drivers* Enhance your skills
with regulator and PWM frameworks* Develop measurement system drivers with IIO
framework* Get the best from memory management and the DMA subsystem* Access
and manage GPIO subsystems and develop GPIO controller driversIn DetailLinux
kernel is a complex, portable, modular and widely used piece of software, running on
around 80% of servers and embedded systems in more than half of devices throughout
the World. Device drivers play a critical role in how well a Linux system performs. As
Linux has turned out to be one of the most popular operating systems used, the interest
in developing proprietary device drivers is also increasing steadily.This book will initially
help you understand the basics of drivers as well as prepare for the long journey
through the Linux Kernel. This book then covers drivers development based on various
Linux subsystems such as memory management, PWM, RTC, IIO, IRQ management,
and so on. The book also offers a practical approach on direct memory access and
network device drivers.By the end of this book, you will be comfortable with the concept

Page 8/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

of device driver development and will be in a position to write any device driver from
scratch using the latest kernel version (v4.13 at the time of writing this book).Style and
approachA set of engaging examples to develop Linux device drivers
In this applications-oriented reference, Doug Abbott shows how to put Linux to work in
embedded and real-time applications. Among the topics Abbott discusses include
memory management, device drivers, interrupt handling, kernel instrumentation,
boatloaders, embedded networking, inter-task communications, periodic vs. "one shot"
timing, POSIX threads, hardware abstraction layers, and program debugging. Abbott
uses numerous real-world examples to show how implement a variety of embedded
applications using Linux. Abbott discusses the strengths and weaknesses for
embedded applications of different implementations of Linux, and he also examines the
different real-time extensions for Linux. This book incorporates many programming
exercises with solutions. All code listings are provided on the accompanying CD-ROM,
as well as an electronic version of the text. *Fully describes the use of Linux operating
system for embedded and real-time applications *Covers advanced topics such as
device drivers, kernel implementation, POSIX threads *The CD accompanying the book
includes an electronic version of the book as well as related software tools and code
listings
In-depth instruction and practical techniques for buildingwith the BeagleBone
embedded Linux platform Exploring BeagleBone is a hands-on guide to

Page 9/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

bringinggadgets, gizmos, and robots to life using the popular BeagleBoneembedded
Linux platform. Comprehensive content and deep detailprovide more than just a
BeagleBone instructionmanual—you’ll also learn the underlying engineeringtechniques
that will allow you to create your own projects. Thebook begins with a foundational
primer on essential skills, andthen gradually moves into communication, control, and
advancedapplications using C/C++, allowing you to learn at your own pace.In addition,
the book’s companion website featuresinstructional videos, source code, discussion
forums, and more, toensure that you have everything you need. The BeagleBone’s
small size, high performance, low cost,and extreme adaptability have made it a favorite
developmentplatform, and the Linux software base allows for complex yetflexible
functionality. The BeagleBone has applications in smartbuildings, robot control,
environmental sensing, to name a few;and, expansion boards and peripherals
dramatically increase thepossibilities. Exploring BeagleBone provides areader-friendly
guide to the device, including a crash coursein computer engineering. While following
step by step, you can: Get up to speed on embedded Linux, electronics,
andprogramming Master interfacing electronic circuits, buses and modules,
withpractical examples Explore the Internet-connected BeagleBone and the
BeagleBonewith a display Apply the BeagleBone to sensing applications, including
videoand sound Explore the BeagleBone’s Programmable Real-TimeControllers
Hands-on learning helps ensure that your new skills stay withyou, allowing you to

Page 10/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

design with electronics, modules, orperipherals even beyond the BeagleBone. Insightful
guidance andonline peer support help you transition from beginner to expert asyou
master the techniques presented in Exploring BeagleBone,the practical handbook for
the popular computing platform.
Master the techniques needed to build great, efficient embedded devices on
LinuxAbout This Book* Discover how to build and configure reliable embedded Linux
devices* This book has been updated to include Linux 4.9 and Yocto Project 2.2
(Morty)* This comprehensive guide covers the remote update of devices in the field and
power managementWho This Book Is ForIf you are an engineer who wishes to
understand and use Linux in embedded devices, this book is for you. It is also for Linux
developers and system programmers who are familiar with embedded systems and
want to learn and program the best in class devices. It is appropriate for students
studying embedded techniques, for developers implementing embedded Linux devices,
and engineers supporting existing Linux devices.What You Will Learn* Evaluate the
Board Support Packages offered by most manufacturers of a system on chip or
embedded module* Use Buildroot and the Yocto Project to create embedded Linux
systems quickly and efficiently* Update IoT devices in the field without compromising
security* Reduce the power budget of devices to make batteries last longer* Interact
with the hardware without having to write kernel device drivers* Debug devices
remotely using GDB, and see how to measure the performance of the systems using

Page 11/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

powerful tools such as perk, ftrace, and valgrind* Find out how to configure Linux as a
real-time operating systemIn DetailEmbedded Linux runs many of the devices we use
every day, from smart TVs to WiFi routers, test equipment to industrial controllers - all
of them have Linux at their heart. Linux is a core technology in the implementation of
the inter-connected world of the Internet of Things.The comprehensive guide shows
you the technologies and techniques required to build Linux into embedded systems.
You will begin by learning about the fundamental elements that underpin all embedded
Linux projects: the toolchain, the bootloader, the kernel, and the root filesystem. You'll
see how to create each of these elements from scratch, and how to automate the
process using Buildroot and the Yocto Project.Moving on, you'll find out how to
implement an effective storage strategy for flash memory chips, and how to install
updates to the device remotely once it is deployed. You'll also get to know the key
aspects of writing code for embedded Linux, such as how to access hardware from
applications, the implications of writing multi-threaded code, and techniques to manage
memory in an efficient way. The final chapters show you how to debug your code, both
in applications and in the Linux kernel, and how to profile the system so that you can
look out for performance bottlenecks.By the end of the book, you will have a complete
overview of the steps required to create a successful embedded Linux system.Style
and approachThis book is an easy-to-follow and pragmatic guide with in-depth analysis
of the implementation of embedded devices. It follows the life cycle of a project from

Page 12/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

inception through to completion, at each stage giving both the theory that underlies the
topic and practical step-by-step walkthroughs of an example implementation.
Master the art of developing customized device drivers for your embedded Linux
systems Key Features Stay up to date with the Linux PCI, ASoC, and V4L2 subsystems
and write device drivers for them Get to grips with the Linux kernel power management
infrastructure Adopt a practical approach to customizing your Linux environment using
best practices Book Description Linux is one of the fastest-growing operating systems
around the world, and in the last few years, the Linux kernel has evolved significantly to
support a wide variety of embedded devices with its improved subsystems and a range
of new features. With this book, you'll find out how you can enhance your skills to write
custom device drivers for your Linux operating system. Mastering Linux Device Driver
Development provides complete coverage of kernel topics, including video and audio
frameworks, that usually go unaddressed. You'll work with some of the most complex
and impactful Linux kernel frameworks, such as PCI, ALSA for SoC, and Video4Linux2,
and discover expert tips and best practices along the way. In addition to this, you'll
understand how to make the most of frameworks such as NVMEM and Watchdog.
Once you've got to grips with Linux kernel helpers, you'll advance to working with
special device types such as Multi-Function Devices (MFD) followed by video and audio
device drivers. By the end of this book, you'll be able to write feature-rich device drivers
and integrate them with some of the most complex Linux kernel frameworks, including

Page 13/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

V4L2 and ALSA for SoC. What you will learn Explore and adopt Linux kernel helpers for
locking, work deferral, and interrupt management Understand the Regmap subsystem
to manage memory accesses and work with the IRQ subsystem Get to grips with the
PCI subsystem and write reliable drivers for PCI devices Write full multimedia device
drivers using ALSA SoC and the V4L2 framework Build power-aware device drivers
using the kernel power management framework Find out how to get the most out of
miscellaneous kernel subsystems such as NVMEM and Watchdog Who this book is for
This book is for embedded developers, Linux system engineers, and system
programmers who want to explore Linux kernel frameworks and subsystems. C
programming skills and a basic understanding of driver development are necessary to
get started with this book.
Embedded Systems Architecture is a practical and technical guide to understanding the
components that make up an embedded system’s architecture. This book is perfect for
those starting out as technical professionals such as engineers, programmers and
designers of embedded systems; and also for students of computer science, computer
engineering and electrical engineering. It gives a much-needed ‘big picture’ for
recently graduated engineers grappling with understanding the design of real-world
systems for the first time, and provides professionals with a systems-level picture of the
key elements that can go into an embedded design, providing a firm foundation on
which to build their skills. Real-world approach to the fundamentals, as well as the

Page 14/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

design and architecture process, makes this book a popular reference for the daunted
or the inexperienced: if in doubt, the answer is in here! Fully updated with new
coverage of FPGAs, testing, middleware and the latest programming techniques in C,
plus complete source code and sample code, reference designs and tools online make
this the complete package Visit the companion web site at
http://booksite.elsevier.com/9780123821966/ for source code, design examples, data
sheets and more A true introductory book, provides a comprehensive get up and
running reference for those new to the field, and updating skills: assumes no prior
knowledge beyond undergrad level electrical engineering Addresses the needs of
practicing engineers, enabling it to get to the point more directly, and cover more
ground. Covers hardware, software and middleware in a single volume Includes a
library of design examples and design tools, plus a complete set of source code and
embedded systems design tutorial materials from companion website
Easy Linux Device Driver : First Step Towards Device Driver Programming Easy Linux
Device Driver book is an easy and friendly way of learning device driver programming .
Book contains all latest programs along with output screen screenshots. Highlighting
important sections and stepwise approach helps for quick understanding of
programming . Book contains Linux installation ,Hello world program up to USB 3.0
,Display Driver ,PCI device driver programming concepts in stepwise approach.
Program gives best understanding of theoretical and practical fundamentals of Linux

Page 15/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

device driver. Beginners should start learning Linux device driver from this book to
become device driver expertise. Topics covered: Introduction of Linux Advantages of
Linux History of Linux Architecture of Linux Definations Ubuntu installation Ubuntu
Installation Steps User Interface Difference About KNOPPIX Important links Terminal:
Soul of Linux Creating Root account Terminal Commands Virtual Editor Commands
Linux Kernel Linux Kernel Internals Kernel Space and User space Device Driver Place
of Driver in System Device Driver working Characteristics of Device Driver Module
Commands Hello World Program pre-settings Write Program Printk function Makefile
Run program Parameter passing Parameter passing program Parameter Array Process
related program Process related program Character Device Driver Major and Minor
number API to registers a device Program to show device number Character Driver File
Operations File operation program. Include .h header Functions in module.h file
Important code snippets Summary of file operations PCI Device Driver Direct Memory
Access Module Device Table Code for Basic Device Driver Important code snippets
USB Device Driver Fundamentals Architecture of USB device driver USB Device Driver
program Structure of USB Device Driver Parts of USB end points Importent features
USB information Driver USB device Driver File Operations Using URB Simple data
transfer Program to read and write Important code snippets Gadget Driver Complete
USB Device Driver Program Skeleton Driver Program Special USB 3.0 USB 3.0 Port
connection Bulk endpoint streaming Stream ID Device Driver Lock Mutual Exclusion

Page 16/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

Semaphore Spin Lock Display Device Driver Frame buffer concept Framebuffer Data
Structure Check and set Parameter Accelerated Method Display Driver summary
Memory Allocation Kmalloc Vmalloc Ioremap Interrupt Handling interrupt registration
Proc interface Path of interrupt Programming Tips Softirqs, Tasklets, Work Queues I/O
Control Introducing ioctl Prototype Stepwise execution of ioctl Sample Device Driver
Complete memory Driver Complete Parallel Port Driver Device Driver Debugging Data
Display Debugger Graphical Display Debugger Kernel Graphical Debugger Appendix I
Exported Symbols Kobjects, Ksets, and Subsystems DMA I/O
“Probably the most wide ranging and complete Linux device driver book I’ve read.”
--Alan Cox, Linux Guru and Key Kernel Developer “Very comprehensive and detailed,
covering almost every single Linux device driver type.” --Theodore Ts’o, First Linux
Kernel Developer in North America and Chief Platform Strategist of the Linux
Foundation The Most Practical Guide to Writing Linux Device Drivers Linux now offers
an exceptionally robust environment for driver development: with today’s kernels, what
once required years of development time can be accomplished in days. In this practical,
example-driven book, one of the world’s most experienced Linux driver developers
systematically demonstrates how to develop reliable Linux drivers for virtually any
device. Essential Linux Device Drivers is for any programmer with a working knowledge
of operating systems and C, including programmers who have never written drivers
before. Sreekrishnan Venkateswaran focuses on the essentials, bringing together all

Page 17/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

the concepts and techniques you need, while avoiding topics that only matter in highly
specialized situations. Venkateswaran begins by reviewing the Linux 2.6 kernel
capabilities that are most relevant to driver developers. He introduces simple device
classes; then turns to serial buses such as I2C and SPI; external buses such as
PCMCIA, PCI, and USB; video, audio, block, network, and wireless device drivers; user-
space drivers; and drivers for embedded Linux–one of today’s fastest growing areas of
Linux development. For each, Venkateswaran explains the technology, inspects
relevant kernel source files, and walks through developing a complete example. •
Addresses drivers discussed in no other book, including drivers for I2C, video, sound,
PCMCIA, and different types of flash memory • Demystifies essential kernel services
and facilities, including kernel threads and helper interfaces • Teaches polling,
asynchronous notification, and I/O control • Introduces the Inter-Integrated Circuit
Protocol for embedded Linux drivers • Covers multimedia device drivers using the
Linux-Video subsystem and Linux-Audio framework • Shows how Linux implements
support for wireless technologies such as Bluetooth, Infrared, WiFi, and cellular
networking • Describes the entire driver development lifecycle, through debugging and
maintenance • Includes reference appendixes covering Linux assembly, BIOS calls,
and Seq files
Linux® is being adopted by an increasing number of embedded systems
developers, who have been won over by its sophisticated scheduling and

Page 18/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

networking, its cost-free license, its open development model, and the support
offered by rich and powerful programming tools. While there is a great deal of
hype surrounding the use of Linux in embedded systems, there is not a lot of
practical information. Building Embedded Linux Systems is the first in-depth, hard-
core guide to putting together an embedded system based on the Linux kernel.
This indispensable book features arcane and previously undocumented
procedures for: Building your own GNU development toolchain Using an efficient
embedded development framework Selecting, configuring, building, and installing
a target-specific kernel Creating a complete target root filesystem Setting up,
manipulating, and using solid-state storage devices Installing and configuring a
bootloader for the target Cross-compiling a slew of utilities and packages
Debugging your embedded system using a plethora of tools and techniques
Details are provided for various target architectures and hardware configurations,
including a thorough review of Linux's support for embedded hardware. All
explanations rely on the use of open source and free software packages. By
presenting how to build the operating system components from pristine sources
and how to find more documentation or help, this book greatly simplifies the task
of keeping complete control over one's embedded operating system, whether it
be for technical or sound financial reasons.Author Karim Yaghmour, a well-

Page 19/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

known designer and speaker who is responsible for the Linux Trace Toolkit,
starts by discussing the strengths and weaknesses of Linux as an embedded
operating system. Licensing issues are included, followed by a discussion of the
basics of building embedded Linux systems. The configuration, setup, and use of
over forty different open source and free software packages commonly used in
embedded Linux systems are also covered. uClibc, BusyBox, U-Boot, OpenSSH,
thttpd, tftp, strace, and gdb are among the packages discussed.
Mac OS X was released in March 2001, but many components, such as Mach
and BSD, are considerably older. Understanding the design, implementation, and
workings of Mac OS X requires examination of several technologies that differ in
their age, origins, philosophies, and roles. Mac OS X Internals: A Systems
Approach is the first book that dissects the internals of the system, presenting a
detailed picture that grows incrementally as you read. For example, you will learn
the roles of the firmware, the bootloader, the Mach and BSD kernel components
(including the process, virtual memory, IPC, and file system layers), the object-
oriented I/O Kit driver framework, user libraries, and other core pieces of
software. You will learn how these pieces connect and work internally, where
they originated, and how they evolved. The book also covers several key areas
of the Intel-based Macintosh computers. A solid understanding of system

Page 20/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

internals is immensely useful in design, development, and debugging for
programmers of various skill levels. System programmers can use the book as a
reference and to construct a better picture of how the core system works.
Application programmers can gain a deeper understanding of how their
applications interact with the system. System administrators and power users can
use the book to harness the power of the rich environment offered by Mac OS X.
Finally, members of the Windows, Linux, BSD, and other Unix communities will
find the book valuable in comparing and contrasting Mac OS X with their
respective systems. Mac OS X Internals focuses on the technical aspects of OS
X and is so full of extremely useful information and programming examples that it
will definitely become a mandatory tool for every Mac OS X programmer.
Twenty five years ago, as often happens in our industry, pundits laughed at and
called Linux a joke. To say that view has changed is a massive understatement.
This book will cement for you both the conceptual 'why' and the practical 'how' of
systems programming on Linux, and covers Linux systems programming on the
latest 4.x kernels.
Provides information on writing a driver in Linux, covering such topics as
character devices, network interfaces, driver debugging, concurrency, and
interrupts.

Page 21/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

LINUX DRIVER DEVELOPMENT FOR EMBEDDED PROCESSORS - SECOND
EDITION - The flexibility of Linux embedded, the availability of powerful, energy
efficient processors designed for embedded computing and the low cost of new
processors are encouraging many industrial companies to come up with new
developments based on embedded processors. Current engineers have in their
hands powerful tools for developing applications previously unimagined, but they
need to understand the countless features that Linux offers today. This book will
teach you how to develop device drivers for Device Tree Linux embedded
systems. You will learn how to write different types of Linux drivers, as well as the
appropriate APIs (Application Program Interfaces) and methods to interface with
kernel and user spaces. This is a book is meant to be practical, but also provides
an important theoretical base. More than twenty drivers are written and ported to
three different processors. You can choose between NXP i.MX7D, Microchip
SAMA5D2 and Broadcom BCM2837 processors to develop and test the drivers,
whose implementation is described in detail in the practical lab sections of the
book. Before you start reading, I encourage you to acquire any of these
processor boards whenever you have access to some GPIOs, and at least one
SPI and I2C controllers. The hardware configurations of the different evaluation
boards used to develop the drivers are explained in detail throughout this book;

Page 22/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

one of the boards used to implement the drivers is the famous Raspberry PI 3
Model B board. You will learn how to develop drivers, from the simplest ones that
do not interact with any external hardware, to drivers that manage different kind
of devices: accelerometers, DACs, ADCs, RGB LEDs, Multi-Display LED
controllers, I/O expanders, and Buttons. You will also develop DMA drivers,
drivers that manage interrupts, and drivers that write/read on the internal
registers of the processor to control external devices. To easy the development
of some of these drivers, you will use different types of Frameworks:
Miscellaneous framework, LED framework, UIO framework, Input framework and
the IIO industrial one. This second edition has been updated to the v4.9 LTS
kernel. Recently, all the drivers have been ported to the new Microchip
SAMA5D27-SOM1 (SAMA5D27 System On Module) using kernel 4.14 LTS and
included in the GitHub repository of this book; these drivers have been tested in
the ATSAMA5D27-SOM1-EK1 evaluation platform; the
ATSAMA5D27-SOM1-EK1 practice lab settings are not described throughout the
text of this book, but in a practice labs user guide that can be downloaded from
the book ?s GitHub.
Expand Raspberry Pi capabilities with fundamental engineering principles
Exploring Raspberry Pi is the innovators guide to bringing Raspberry Pi to life.

Page 23/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

This book favors engineering principles over a 'recipe' approach to give you the
skills you need to design and build your own projects. You'll understand the
fundamental principles in a way that transfers to any type of electronics,
electronic modules, or external peripherals, using a "learning by doing" approach
that caters to both beginners and experts. The book begins with basic Linux and
programming skills, and helps you stock your inventory with common parts and
supplies. Next, you'll learn how to make parts work together to achieve the goals
of your project, no matter what type of components you use. The companion
website provides a full repository that structures all of the code and scripts, along
with links to video tutorials and supplementary content that takes you deeper into
your project. The Raspberry Pi's most famous feature is its adaptability. It can be
used for thousands of electronic applications, and using the Linux OS expands
the functionality even more. This book helps you get the most from your
Raspberry Pi, but it also gives you the fundamental engineering skills you need to
incorporate any electronics into any project. Develop the Linux and programming
skills you need to build basic applications Build your inventory of parts so you can
always "make it work" Understand interfacing, controlling, and communicating
with almost any component Explore advanced applications with video, audio, real-
world interactions, and more Be free to adapt and create with Exploring

Page 24/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

Raspberry Pi.
Describes the concepts of programming with Linux, covering such topics as shell
programming, file structure, managing memory, using MySQL, debugging,
processes and signals, and GNOME.
Based upon the authors' experience in designing and deploying an embedded
Linux system with a variety of applications, Embedded Linux System Design and
Development contains a full embedded Linux system development roadmap for
systems architects and software programmers. Explaining the issues that arise
out of the use of Linux in embedded systems, the book facilitates movement to
embedded Linux from traditional real-time operating systems, and describes the
system design model containing embedded Linux. This book delivers practical
solutions for writing, debugging, and profiling applications and drivers in
embedded Linux, and for understanding Linux BSP architecture. It enables you to
understand: various drivers such as serial, I2C and USB gadgets; uClinux
architecture and its programming model; and the embedded Linux graphics
subsystem. The text also promotes learning of methods to reduce system boot
time, optimize memory and storage, and find memory leaks and corruption in
applications. This volume benefits IT managers in planning to choose an
embedded Linux distribution and in creating a roadmap for OS transition. It also

Page 25/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

describes the application of the Linux licensing model in commercial products.
In her first novel since The Quick and the Dead (a finalist for the Pulitzer Prize), the
legendary writer takes us into an uncertain landscape after an environmental
apocalypse, a world in which only the man-made has value, but some still wish to
salvage the authentic. "She practices ... camouflage, except that instead of adapting to
its environment, Williams’s imagination, by remaining true to itself, reveals new
colorations in the ecology around her.” —A.O. Scott, The New York Times Book Review
Khristen is a teenager who, her mother believes, was marked by greatness as a baby
when she died for a moment and then came back to life. After Khristen’s failing
boarding school for gifted teens closes its doors, and she finds that her mother has
disappeared, she ranges across the dead landscape and washes up at a “resort” on
the shores of a mysterious, putrid lake the elderly residents there call “Big Girl.” In a
rotting honeycomb of rooms, these old ones plot actions to punish corporations and
people they consider culpable in the destruction of the final scraps of nature’s beauty.
What will Khristen and Jeffrey, the precocious ten-year-old boy she meets there, learn
from this “gabby seditious lot, in the worst of health but with kamikaze hearts, an army
of the aged and ill, determined to refresh, through crackpot violence, a plundered
earth”? Rivetingly strange and beautiful, and delivered with Williams’s searing,
deadpan wit, Harrow is their intertwined tale of paradise lost and of their
reasons—against all reasonableness—to try and recover something of it.

Page 26/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

Provides a definitive resource for those who want to support computer peripherals
under the Linux operating system, explaining how to write a driver for a broad spectrum
of devices, including character devices, network interfaces, and block devices. Original.
(Intermediate).
Learn to develop customized device drivers for your embedded Linux system About
This Book Learn to develop customized Linux device drivers Learn the core concepts of
device drivers such as memory management, kernel caching, advanced IRQ
management, and so on. Practical experience on the embedded side of Linux Who This
Book Is For This book will help anyone who wants to get started with developing their
own Linux device drivers for embedded systems. Embedded Linux users will benefit
highly from this book. This book covers all about device driver development, from char
drivers to network device drivers to memory management. What You Will Learn Use
kernel facilities to develop powerful drivers Develop drivers for widely used I2C and SPI
devices and use the regmap API Write and support devicetree from within your drivers
Program advanced drivers for network and frame buffer devices Delve into the Linux
irqdomain API and write interrupt controller drivers Enhance your skills with regulator
and PWM frameworks Develop measurement system drivers with IIO framework Get
the best from memory management and the DMA subsystem Access and manage
GPIO subsystems and develop GPIO controller drivers In Detail Linux kernel is a
complex, portable, modular and widely used piece of software, running on around 80%

Page 27/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

of servers and embedded systems in more than half of devices throughout the World.
Device drivers play a critical role in how well a Linux system performs. As Linux has
turned out to be one of the most popular operating systems used, the interest in
developing proprietary device drivers is also increasing steadily. This book will initially
help you understand the basics of drivers as well as prepare for the long journey
through the Linux Kernel. This book then covers drivers development based on various
Linux subsystems such as memory management, PWM, RTC, IIO, IRQ management,
and so on. The book also offers a practical approach on direct memory access and
network device drivers. By the end of this book, you will be comfortable with the
concept of device driver development and will be in a position to write any device driver
from scratch using the latest kernel version (v4.13 at the time of writing this book). Style
and approach A set of engaging examples to develop Linux device drivers
Linux Driver Development with Raspberry Pi - Practical Labs Embedded systems have
become an integral part of our daily life. They are deployed in mobile devices,
networking infrastructure, home and consumer devices, digital signage, medical
imaging, automotive infotainment and many other industrial applications. The use of
embedded systems is growing exponentially. Many of these embedded systems are
powered by an inexpensive yet powerful system-on-chip (SoC) that is running a Linux
operating system. The BCM2837 from Broadcom is one of these SoCs, running quad
ARM Cortex A53 cores at 1.2GHz. This is the SoC used in the popular Raspberry Pi 3

Page 28/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

boards. This book follows the learning by doing approach, so you will be playing with
your Raspberry Pi since the first chapter. Besides the Raspberry Pi board, you will use
several low-cost boards to develop the hands-on examples. In the labs, it is described
what each step means in detail so that you can use your own hardware components
adapting the content of the book to your needs. You will learn how to develop Linux
drivers for the Raspberry Pi boards. You will start with the simplest ones that do not
interact with any external hardware, then you will develop Linux drivers that manage
different kind of devices: Accelerometer, DAC, ADC, RGB LED, Buttons, Joystick
controller, Multi-Display LED controller and I/O expanders controlled via I2C and SPI
buses. You will also develop DMA drivers, USB device drivers, drivers that manage
interrupts and drivers that write and read on the internal registers of the SoC to control
its GPIOs. To ease the development of some of these drivers, you will use different
types of Linux kernel subsystems: Miscellaneous, LED, UIO, USB, Input and Industrial
I/O. More than 30 kernel modules have been written (besides several user
applications), which can be downloaded from the book's GitHub repository. This book
uses the Long Term Support (LTS) Linux kernel 5.4, which was released on November
2019 and will be maintained until December 2025. The Linux drivers and applications
developed in the labs have been ported to three different Raspberry Pi boards:
Raspberry Pi 3 Model B, Raspberry Pi 3 Model B+ and Raspberry Pi 4 Model B. This
book is a learning tool to start developing drivers without any previous knowledge about

Page 29/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

this field, so the intention during its writing has been to develop drivers without a high
level of complexity that both serve to reinforce the main driver development concepts
and can be a starting point to help you to develop your own drivers. And, remember
that the best way to develop a driver is not to write it from scratch. You can reuse free
code from similar Linux kernel mainline drivers. All the drivers written throughout this
book are GPL licensed, so you can modify and redistribute them under the same
license.
Learn how to write high-quality kernel module code, solve common Linux kernel
programming issues, and understand the fundamentals of Linux kernel internals Key
Features Discover how to write kernel code using the Loadable Kernel Module
framework Explore industry-grade techniques to perform efficient memory allocation
and data synchronization within the kernel Understand the essentials of key internals
topics such as kernel architecture, memory management, CPU scheduling, and kernel
synchronization Book Description Linux Kernel Programming is a comprehensive
introduction for those new to Linux kernel and module development. This easy-to-follow
guide will have you up and running with writing kernel code in next-to-no time. This
book uses the latest 5.4 Long-Term Support (LTS) Linux kernel, which will be
maintained from November 2019 through to December 2025. By working with the 5.4
LTS kernel throughout the book, you can be confident that your knowledge will continue
to be valid for years to come. This Linux book begins by showing you how to build the

Page 30/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

kernel from the source. Next, you'll learn how to write your first kernel module using the
powerful Loadable Kernel Module (LKM) framework. The book then covers key kernel
internals topics including Linux kernel architecture, memory management, and CPU
scheduling. Next, you'll delve into the fairly complex topic of concurrency within the
kernel, understand the issues it can cause, and learn how they can be addressed with
various locking technologies (mutexes, spinlocks, atomic, and refcount operators).
You'll also benefit from more advanced material on cache effects, a primer on lock-free
techniques within the kernel, deadlock avoidance (with lockdep), and kernel lock
debugging techniques. By the end of this kernel book, you'll have a detailed
understanding of the fundamentals of writing Linux kernel module code for real-world
projects and products. What you will learn Write high-quality modular kernel code (LKM
framework) for 5.x kernels Configure and build a kernel from source Explore the Linux
kernel architecture Get to grips with key internals regarding memory management
within the kernel Understand and work with various dynamic kernel memory
alloc/dealloc APIs Discover key internals aspects regarding CPU scheduling within the
kernel Gain an understanding of kernel concurrency issues Find out how to work with
key kernel synchronization primitives Who this book is for This book is for Linux
programmers beginning to find their way with Linux kernel development. Linux kernel
and driver developers looking to overcome frequent and common kernel development
issues, as well as understand kernel internals, will benefit from this book. A basic

Page 31/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

understanding of Linux CLI and C programming is required.
Over 30 recipes to develop custom drivers for your embedded Linux applications. Key
Features Use Kernel facilities to develop powerful drivers Via a practical approach,
learn core concepts of developing device drivers Program a custom character device to
get access to kernel internals Book Description Linux is a unified kernel that is widely
used to develop embedded systems. As Linux has turned out to be one of the most
popular operating systems used, the interest in developing proprietary device drivers
has also increased. Device drivers play a critical role in how the system performs and
ensures that the device works in the manner intended. By offering several examples on
the development of character devices and how to use other kernel internals, such as
interrupts, kernel timers, and wait queue, as well as how to manage a device tree, you
will be able to add proper management for custom peripherals to your embedded
system. You will begin by installing the Linux kernel and then configuring it. Once you
have installed the system, you will learn to use the different kernel features and the
character drivers. You will also cover interrupts in-depth and how you can manage
them. Later, you will get into the kernel internals required for developing applications.
Next, you will implement advanced character drivers and also become an expert in
writing important Linux device drivers. By the end of the book, you will be able to easily
write a custom character driver and kernel code as per your requirements. What you
will learn Become familiar with the latest kernel releases (4.19+/5.x) running on the

Page 32/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

ESPRESSObin devkit, an ARM 64-bit machine Download, configure, modify, and build
kernel sources Add and remove a device driver or a module from the kernel Master
kernel programming Understand how to implement character drivers to manage
different kinds of computer peripherals Become well versed with kernel helper functions
and objects that can be used to build kernel applications Acquire a knowledge of in-
depth concepts to manage custom hardware with Linux from both the kernel and user
space Who this book is for This book will help anyone who wants to develop their own
Linux device drivers for embedded systems. Having basic hand-on with Linux operating
system and embedded concepts is necessary.
Introduces the features of the C programming language, discusses data types,
variables, operators, control flow, functions, pointers, arrays, and structures, and looks
at the UNIX system interface
Master the techniques needed to build great, efficient embedded devices on Linux
About This Book Discover how to build and configure reliable embedded Linux devices
This book has been updated to include Linux 4.9 and Yocto Project 2.2 (Morty) This
comprehensive guide covers the remote update of devices in the field and power
management Who This Book Is For If you are an engineer who wishes to understand
and use Linux in embedded devices, this book is for you. It is also for Linux developers
and system programmers who are familiar with embedded systems and want to learn
and program the best in class devices. It is appropriate for students studying embedded

Page 33/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

techniques, for developers implementing embedded Linux devices, and engineers
supporting existing Linux devices. What You Will Learn Evaluate the Board Support
Packages offered by most manufacturers of a system on chip or embedded module
Use Buildroot and the Yocto Project to create embedded Linux systems quickly and
efficiently Update IoT devices in the field without compromising security Reduce the
power budget of devices to make batteries last longer Interact with the hardware
without having to write kernel device drivers Debug devices remotely using GDB, and
see how to measure the performance of the systems using powerful tools such as perk,
ftrace, and valgrind Find out how to configure Linux as a real-time operating system In
Detail Embedded Linux runs many of the devices we use every day, from smart TVs to
WiFi routers, test equipment to industrial controllers - all of them have Linux at their
heart. Linux is a core technology in the implementation of the inter-connected world of
the Internet of Things. The comprehensive guide shows you the technologies and
techniques required to build Linux into embedded systems. You will begin by learning
about the fundamental elements that underpin all embedded Linux projects: the
toolchain, the bootloader, the kernel, and the root filesystem. You'll see how to create
each of these elements from scratch, and how to automate the process using Buildroot
and the Yocto Project. Moving on, you'll find out how to implement an effective storage
strategy for flash memory chips, and how to install updates to the device remotely once
it is deployed. You'll also get to know the key aspects of writing code for embedded

Page 34/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

Linux, such as how to access hardware from applications, the implications of writing
multi-threaded code, and techniques to manage memory in an efficient way. The final
chapters show you how to debug your code, both in applications and in the Linux
kernel, and how to profile the system so that you can look out for performance
bottlenecks. By the end of the book, you will have a complete overview of the steps
required to create a successful embedded Linux system. Style and approach This book
is an easy-to-follow and pragmatic guide with in-depth analysis of the implementation of
embedded devices. It follows the life cycle of a project from inception through to
completion, at each stage giving both the theory that underlies the topic and practical
step-by-step walkthroughs of an example implementation.
Nwely updated to include new calls and techniques introduced in Versions 2.2
and 2.4 of the Linux kernel, a definitive resource for those who want to support
computer peripherals under the Linux operating system explains how to write a
driver for a broad spectrum of devices, including character devices, network
interfaces, and block devices. Original. (Intermediate)
Find solutions to all your problems related to Linux system programming using
practical recipes for developing your own system programs Key Features
Develop a deeper understanding of how Linux system programming works Gain
hands-on experience of working with different Linux projects with the help of

Page 35/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

practical examples Learn how to develop your own programs for Linux Book
Description Linux is the world's most popular open source operating system
(OS). Linux System Programming Techniques will enable you to extend the Linux
OS with your own system programs and communicate with other programs on
the system. The book begins by exploring the Linux filesystem, its basic
commands, built-in manual pages, the GNU compiler collection (GCC), and Linux
system calls. You'll then discover how to handle errors in your programs and will
learn to catch errors and print relevant information about them. The book takes
you through multiple recipes on how to read and write files on the system, using
both streams and file descriptors. As you advance, you'll delve into forking,
creating zombie processes, and daemons, along with recipes on how to handle
daemons using systemd. After this, you'll find out how to create shared libraries
and start exploring different types of interprocess communication (IPC). In the
later chapters, recipes on how to write programs using POSIX threads and how
to debug your programs using the GNU debugger (GDB) and Valgrind will also
be covered. By the end of this Linux book, you will be able to develop your own
system programs for Linux, including daemons, tools, clients, and filters. What
you will learn Discover how to write programs for the Linux system using a wide
variety of system calls Delve into the working of POSIX functions Understand and

Page 36/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

use key concepts such as signals, pipes, IPC, and process management Find out
how to integrate programs with a Linux system Explore advanced topics such as
filesystem operations, creating shared libraries, and debugging your programs
Gain an overall understanding of how to debug your programs using Valgrind
Who this book is for This book is for anyone who wants to develop system
programs for Linux and gain a deeper understanding of the Linux system. The
book is beneficial for anyone who is facing issues related to a particular part of
Linux system programming and is looking for specific recipes or solutions.
To thoroughly understand what makes Linux tick and why it's so efficient, you
need to delve deep into the heart of the operating system--into the Linux kernel
itself. The kernel is Linux--in the case of the Linux operating system, it's the only
bit of software to which the term "Linux" applies. The kernel handles all the
requests or completed I/O operations and determines which programs will share
its processing time, and in what order. Responsible for the sophisticated memory
management of the whole system, the Linux kernel is the force behind the
legendary Linux efficiency. The new edition of Understanding the Linux Kernel
takes you on a guided tour through the most significant data structures, many
algorithms, and programming tricks used in the kernel. Probing beyond the
superficial features, the authors offer valuable insights to people who want to

Page 37/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

know how things really work inside their machine. Relevant segments of code are
dissected and discussed line by line. The book covers more than just the
functioning of the code, it explains the theoretical underpinnings for why Linux
does things the way it does. The new edition of the book has been updated to
cover version 2.4 of the kernel, which is quite different from version 2.2: the
virtual memory system is entirely new, support for multiprocessor systems is
improved, and whole new classes of hardware devices have been added. The
authors explore each new feature in detail. Other topics in the book include:
Memory management including file buffering, process swapping, and Direct
memory Access (DMA) The Virtual Filesystem and the Second Extended
Filesystem Process creation and scheduling Signals, interrupts, and the essential
interfaces to device drivers Timing Synchronization in the kernel Interprocess
Communication (IPC) Program execution Understanding the Linux Kernel,
Second Edition will acquaint you with all the inner workings of Linux, but is more
than just an academic exercise. You'll learn what conditions bring out Linux's
best performance, and you'll see how it meets the challenge of providing good
system response during process scheduling, file access, and memory
management in a wide variety of environments. If knowledge is power, then this
book will help you make the most of your Linux system.

Page 38/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

Find an introduction to the architecture, concepts and algorithms of the Linux
kernel in Professional Linux Kernel Architecture, a guide to the kernel sources
and large number of connections among subsystems. Find an introduction to the
relevant structures and functions exported by the kernel to userland, understand
the theoretical and conceptual aspects of the Linux kernel and Unix derivatives,
and gain a deeper understanding of the kernel. Learn how to reduce the vast
amount of information contained in the kernel sources and obtain the skills
necessary to understand the kernel sources.
This book contains the practical labs corresponding to the "Linux Kernel and
Driver Development: Training Handouts" book from Bootlin. Get your hands on
an embedded board based on an ARM processor (the Beagle Bone Black
board), and apply what you learned: write a Device Tree to declare devices
connected to your board, configure pin multiplexing, and implement drivers for
I2C and serial devices. You will learn how to manage multiple devices with the
same driver, to acces and write hardware registers, to allocate memory, to
register and manage interrupts, as well as how to debug your code and interpret
the kernel error messages. You will also keep an eye on the board and CPU
datasheets so that you will always understand the values that you feed to the
kernel.

Page 39/40



Read Online Practical Linux Programming Device Drivers Embedded
Systems And The Internet Programming Series

Copyright: 520fc851768f2f9132002137cdf9584f

Copyright : sbc.ccef.org

Page 40/40

https://sbc.ccef.org/
http://sbc.ccef.org

